Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
NA (Ed.)This study proposes the novel formulation of measuring emotional similarity between speech recordings. This formulation explores the ordinal nature of emotions by comparing emotional similarities instead of predicting an emotional attribute, or recognizing an emotional category. The proposed task determines which of two alternative samples has the most similar emotional content to the emotion of a given anchor. This task raises some interesting questions. Which is the emotional descriptor that provide the most suitable space to assess emotional similarities? Can deep neural networks (DNNs) learn representations to robustly quantify emotional similarities? We address these questions by exploring alternative emotional spaces created with attribute-based descriptors and categorical emotions. We create the representation using a DNN trained with the triplet loss function, which relies on triplets formed with an anchor, a positive example, and a negative example. We select a positive sample that has similar emotion content to the anchor, and a negative sample that has dissimilar emotion to the anchor. The task of our DNN is to identify the positive sample. The experimental evaluations demonstrate that we can learn a meaningful embedding to assess emotional similarities, achieving higher performance than human evaluators asked to complete the same task.more » « less
-
The ability to identify speech with similar emotional content is valuable to many applications, including speech retrieval, surveillance, and emotional speech synthesis. While current formulations in speech emotion recognition based on classification or regression are not appropriate for this task, solutions based on preference learning offer appealing approaches for this task. This paper aims to find speech samples that are emotionally similar to an anchor speech sample provided as a query. This novel formulation opens interesting research questions. How well can a machine complete this task? How does the accuracy of automatic algorithms compare to the performance of a human performing this task? This study addresses these questions by training a deep learning model using a triplet loss function, mapping the acoustic features into an embedding that is discriminative for this task. The network receives an anchor speech sample and two competing speech samples, and the task is to determine which of the candidate speech sample conveys the closest emotional content to the emotion conveyed by the anchor. By comparing the results from our model with human perceptual evaluations, this study demonstrates that the proposed approach has performance very close to human performance in retrieving samples with similar emotional content.more » « less
-
Detection of human emotions is an essential part of affect-aware human-computer interaction (HCI). In daily conversations, the preferred way of describing affects is by using categorical emotion labels (e.g., sad, anger, surprise). In categorical emotion classification, multiple descriptors (with different degrees of relevance) can be assigned to a sample. Perceptual evaluations have relied on primary and secondary emotions to capture the ambiguous nature of spontaneous recordings. Primary emotion is the most relevant category felt by the evaluator. Secondary emotions capture other emotional cues also conveyed in the stimulus. In most cases, the labels collected from the secondary emotions are discarded, since assigning a single class label to a sample is preferred from an application perspective. In this work, we take advantage of both types of annotations to improve the performance of emotion classification. We collect the labels from all the annotations available for a sample and generate primary and secondary emotion labels. A classifier is then trained using multitask learning with both primary and secondary emotions. We experimentally show that considering secondary emotion labels during the learning process leads to relative improvements of 7.9% in F1-score for an 8-class emotion classification task.more » « less
An official website of the United States government
